El pensamiento cosmológico conduce a una nueva teoría sobre las conexiones cerebrales
Después de una carrera profundizando en los misterios del universo, un científico senior en el Campus de Investigación de Janelia ahora está explorando los misterios del cerebro humano y desarrollando nuevos conocimientos sobre las conexiones entre las células cerebrales.
Tirthabir Biswas tenía una carrera exitosa como físico teórico de alta energía cuando llegó a Janelia en un año sabático en 2018. Biswas todavía disfrutaba resolviendo problemas sobre el universo, pero el campo había perdido parte de su entusiasmo, con muchas preguntas importantes ya respondidas. . .
«La neurociencia de hoy es un poco como la física de hace cien años, cuando la física tenía tantos datos y no sabían lo que estaba pasando y era emocionante», dice Biswas, quien forma parte del Laboratorio Fitzgerald. «Hay mucha información en neurociencia y muchos datos, y entienden algunos grandes circuitos específicos, pero todavía no hay una comprensión teórica integral y existe la oportunidad de contribuir».
Una de las mayores preguntas sin respuesta de la neurociencia gira en torno a las conexiones entre las células cerebrales. Hay cientos de veces más conexiones en el cerebro humano que estrellas en la Vía Láctea, pero qué células cerebrales están conectadas y por qué siguen siendo un misterio. Esto limita la capacidad de los científicos para tratar con precisión los problemas de salud mental y desarrollar una inteligencia artificial más precisa.
El desafío de desarrollar una teoría matemática para comprender mejor estas conexiones fue un problema que el líder del Grupo Janelia, James Fitzgerald, planteó por primera vez cuando Tirthabir Biswas llegó a su laboratorio.
Mientras Fitzgerald estuvo fuera de la ciudad durante unos días, Biswas se sentó con lápiz y papel y usó su experiencia en geometría de alta dimensión para pensar en el problema, un enfoque diferente al de los neurocientíficos, que normalmente se basan en el cálculo y el álgebra para resolver el problema. problema problemas de matematicas. En cuestión de días, Biswas tuvo una idea importante de la solución y se acercó a Fitzgerald tan pronto como regresó.
“Parecía que este era un problema muy difícil, así que si digo, ‘Resolví el problema’, probablemente pensará que estoy loco”, recuerda Biswas. “Pero decidí decirlo de todos modos”. Fitzgerald inicialmente se mostró escéptico, pero cuando Biswas terminó de exhibir su trabajo, ambos se dieron cuenta de que estaba en algo importante.
“Tenía una visión realmente fundamental de cómo funcionan estas redes que la gente no tenía antes”, dice Fitzgerald. “Esta percepción fue posible gracias al pensamiento interdisciplinario. Esa idea fue un destello de brillantez que obtuvo por su forma de pensar, y se tradujo en este nuevo problema en el que nunca había trabajado antes».
La idea de Biswas ayudó al equipo a desarrollar una nueva forma de identificar las conexiones esenciales entre las células cerebrales, publicada el 29 de junio en Investigación de revisión física. Al analizar las redes neuronales, modelos matemáticos que imitan las células del cerebro y sus conexiones, pudieron descubrir que ciertas conexiones en el cerebro pueden ser más esenciales que otras.
Específicamente, observaron cómo estas redes transforman las entradas en salidas. Por ejemplo, una entrada podría ser una señal detectada por el ojo y la salida podría ser la actividad cerebral resultante. Analizaron qué patrones de conexión dieron como resultado la misma transformación de entrada-salida.
Como era de esperar, había un número infinito de conexiones posibles para cada combinación de entrada-salida. Pero también encontraron que ciertas conexiones aparecían en todos los modelos, lo que llevó al equipo a sugerir que estas conexiones necesarias podrían estar presentes en cerebros reales. Una mejor comprensión de qué conexiones son más esenciales que otras puede conducir a una mayor conciencia de cómo las redes neuronales reales en el cerebro realizan los cálculos.
El próximo paso es que los neurocientíficos experimentales prueben esta nueva teoría matemática para ver si se puede usar para hacer predicciones sobre lo que sucede en el cerebro. La teoría tiene aplicaciones directas a los esfuerzos de Janelia para mapa mosca cerebro conectoma y registrar actividad cerebral en larvas de pez cebra. Descubrir los principios teóricos subyacentes en estos pequeños animales podría usarse para comprender las conexiones en el cerebro humano, donde aún no es factible registrar esta actividad.
“Lo que estamos tratando de hacer es idear algunas formas teóricas de comprender lo que realmente importa y usar estos cerebros simples para probar esas teorías”, dice Fitzgerald. «Como se verifican en cerebros simples, la teoría general se puede usar para pensar cómo funciona la computación cerebral en cerebros más grandes».
Referencia: Biswas T, Fitzgerald JE. Estructura geométrica para predecir la estructura de función en redes neuronales. Investigación Phys Rev. 2022;4(2):023255. Duele:10.1103/PhysRevResearch.4.023255
Este artículo se ha vuelto a publicar de la siguiente materiales. Nota: Es posible que el material haya sido editado por su extensión y contenido. Para obtener más información, comuníquese con la fuente citada.